
 

 

 

 

 

Predictions Using Machine Learning 

Keertik Bacon 

 

 

 

 

 

 

 

 

 

 

 

Centennial High School 

4300 Centennial Lane 

Ellicott City, MD 21042 

  



 
 

Table of Contents 

 

Introduction ......................................................................................................................................1 

Materials ..........................................................................................................................................2 

Methods............................................................................................................................................3 

Results ........................................................................................................................................ 4 - 9 

Conclusion .....................................................................................................................................10 

Appendix 1 – Works Cited ............................................................................................................11 

Appendix 2 – Python Code .................................................................................................... 12 - 14 

Appendix 3 – Code for Previous Versions ............................................................................ 15 - 17 

 

 

  



Bacon 1 
 

Introduction 

Almost every week in the September to February NFL season, analysts from NFL.com, CBS, 

NBC, FOX, Yahoo Sports, local newspapers, and various other organizations make their 

predictions on the winners of the weekend’s football games, with around 50 – 60 different takes 

on the game’s outcome. These analysts base their predictions on previous performances, looking 

at the players, the coaching, the opposition, and other circumstances, to decide the winner, and 

the margin of victory. Since the performance of a team in future games is difficult to predict, and 

is contingent on many factors, predicting results has long been the domain of human analysts, as 

such relationships are too complex to condense into a logic expression format for computers to 

understand. However, with the advent of deep learning and neural networks, computers can be 

trained to find the pattern in a set of data without human intervention and use the pattern to make 

predictions. The objective of this research was to analyze the viability of machine learning 

algorithms in predicting complex occurrences, by creating an algorithm to predict the results of 

NFL games. It was hypothesized that the machine learning algorithm would be able to predict 

games with a success rate of at least 75%, higher than that of most analysts, whose rates are 

usually between 60% and 70%. 

  



Bacon 2 
 

Materials 

As this research project focuses on computer software and creating computer algorithms, the 

only equipment needed was a computer and several pieces of software. 

The Python programming language was used to set the parameters for the creation and training 

of the machine learning algorithm, and make predictions using the input data and algorithm. 

Enthought Canopy was used as the IDE in which all the code, including that for training the 

algorithm, taking input data and adapting it for its own use, and making predictions with the data 

and algorithm, was written. 

 

Figure 1. Screenshot of the Python program used to build the neural network. 

TensorFlow and Keras were used in tandem to create the deep learning model, with TensorFlow 

used to store the data for each neuron, and Keras used on top to organize the data for the neurons 

into layers and creating a “network.”  



Bacon 3 
 

Methods 

A 1431 NFL game dataset was used to train the models.  This dataset contains 60 statistics each 

for both teams in a game, averaged over three different time periods – the past season, the 

current season, and the past three games. The dataset does not contain the identities of either 

team participating, allowing the algorithm to be more flexible and predict matchups based on 

how similar teams performed against similar opponents, rather than looking how that specific 

team performs. 

A variety of machine learning techniques were trained and tested using the dataset, to see which 

one works best in this situation. These techniques were: 

• Decision Tree 

• Random Forest 

• Logistic Regression 

• Support Vector Machine 

• K Nearest Neighbors 

• Naïve Bayes 

• Neural Network 

Each of these methods were used to create a model, with varying accuracies. All the models were 

optimized for maximum performance, except for the neural network, whose flexibility allows for 

much more optimization than the other techniques.  



Bacon 4 
 

Results 

Decision Tree 

This technique analyzes the data and creates a flowchart that it consults to make predictions. 

Decision trees work better with simpler relationships with fewer variables and less overall noise 

in the data. Unfortunately, that means that this technique is not very suited for predicting NFL 

games, which are more complex. 

 

Figure 2. Decision tree created by the program to use for predicting results. 

The decision tree model had the lowest accuracy of all the machine learning models, at 56.8%. 

Random Forest 

This technique builds off decision trees, building a “forest” of several decision tree models and 

having them vote on the prediction. This method is better, as it aggregates a prediction rather 

than relying on one model, but it is only marginally better than decision trees in this application, 

as it still suffers from the problem that it is not suited for a large and complex dataset. The 

Random Forest model had an accuracy of 59.9%. 



Bacon 5 
 

Logistic Regression 

This technique plots the data points and finds a logistic function that fits the data and can be used 

to predict additional points. This method is considerably more basic than other machine learning 

techniques, as it is similar to linear and quadratic regression, which are used for tightly correlated 

and simple relationships. Logistic functions have an additional advantage of being better at 

choosing a binary answer, due to their s-shaped curve. 

 

Figure 3. Comparison between linear and logistic regression; Retrieved on 9 Feb. 2019 from 

https://medium.com/greyatom/logistic-regression-89e496433063 

However, the model could not handle the complex data, and it had an accuracy of only 59.8%. 

Support Vector Machine (SVM) 

This method plots all the training points and attempts to group all the points with the same 

classification (ex. match won/lost) together by drawing dividing lines between points of different 

classifications. This method allows for more complex relationships, as instead of focusing on 

modeling the actual data, it focuses on dividing up the graph between the different 

classifications. 



Bacon 6 
 

 

Figure 4. Diagram illustrating that support vector machines work by dividing up the graph 

between the different classes of data. Retrieved on 9 Feb. 2019 from 

https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-

f0812effc72 

The SVM model performed considerably better than any of the previous models, with an 

accuracy of 63.4%. 

K Nearest Neighbors 

This technique plots all the training data points, but unlike SVM, does not draw lines to split up 

the graph based on classification. Instead, the algorithm plots the input point, finds the closest 

points to it on the graph, and uses their classification to determine that of the input point. 

Essentially, the algorithm finds the most similar points to the input point and passes on their 

classification to the input point. The number of closest neighbors that the algorithm looks at can 

be adjusted, as some numbers yield better results than others. 



Bacon 7 
 

 

Figure 5. Diagram illustrating that K Nearest Neighbor algorithms work by looking at the 

classifications of points around the input point. Retrieved on 9 Feb. 2019 from 

https://medium.com/@adi.bronshtein/a-quick-introduction-to-k-nearest-neighbors-algorithm-

62214cea29c7 

17 neighbors proved to be the most successful, giving the model a success rate of 63.5%, 0.1 

percentage points better than the SVM model. 

Naïve Bayes 

This method uses probability to determine the classification of a data point, by analyzing the 

chance of a certain event occurring, given that another event has occurred. If certain statistics are 

input, and the algorithm notices that in the training set that teams with similar statistics have lost 

more often than they have won, the model will predict that the input team will lose. The 

technique is “naïve,” because it assumes that all the independent variables are equally important, 

and independent of each other. Aside from this small caveat, the method is useful for modelling 

complex relationships. 

The Naïve Bayes model had a success rate of 63.7%, which is quite remarkable compared to the 

other techniques. However, this places it along the lower end of 60 - 70% accuracy of analysts, 

meaning that it is still not quite on equal footing with humans. 

  



Bacon 8 
 

Neural Networks 

Neural networks are different from previous techniques, in that they offer much more potential 

and flexibility for optimization. They consist of a multitude of neurons, which are arranged in 

layers, and connected to many other neurons in different layers. Training the neural network 

consists of inputting values and adjusting the sensitivity of the connections to have the network 

output the correct classifications. The number of layers and neurons in each layer can be altered, 

allowing the technique flexibility and potential to improve. 

 

Figure 6. Diagram of the neural network used in this project. 

The neural network used for this project consisted of 3 layers: an input layer consisting of 361 

neurons (one for each statistic inputted), a hidden layer with 300 neurons, and an output layer 

with 1 neuron. The output neuron would output either a 0 or 1, predicting either a home team or 

away team victory. 

The neural network was by far the most successful model, with an accuracy of 69.4%, paralleling 

the accuracies of some of the more successful NFL analysts in terms of match predictions. 



Bacon 9 
 

 

Graph 1. A comparison of the success rate of all the different machine learning techniques used 

in this research project. The model with the lowest accuracy was the decision tree, with 56.8%, 

and the model with the highest accuracy was the neural network, with 69.4%. 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Decision
Tree

Random
Forest

Logistic
Regression

Support
Vector

Machine

K Nearest
Neighbors

Naïve Bayes Neural
Network

A
cc

u
ra

cy

Technique

Machine Learning Technique Comparison



Bacon 10 
 

Conclusion 

The neural network was successful in supporting the viability of machine learning algorithms in 

predicting NFL matchups, proving its mettle by predicting with an accuracy on par with that of 

the top analysts. During the 2018 – 19 NFL season, the algorithm was used to predict a few game 

results, and it had an accuracy of 100% in such predictions, even predicting two upsets. 

However, the sample size is limited to three games, and so definitive conclusions cannot be 

made, making the 69.4% success rate still the most accurate metric. With some additional 

optimization, the model could reach the originally hypothesized accuracy of 75%. 

Several aspects of both the dataset and the model can be improved to achieve this goal. For 

example, the year of each game could be added to the dataset, as in more recent years a higher 

offensive output is necessary to win. Another statistic that could be added is quarterback 

interceptions, as a team that is intercepted more usually loses. 

The neural network used in this project is a base model. There are other derivatives of the neural 

network that are better at certain applications. For example, the Recurrent Neural Network can 

analyze a series of input data, making it well-suited for analyzing a series of games without 

needing to average the statistics, as was done when feeding them into the base neural network 

used in this project. In addition, the RNN would be more flexible with weighting more recent 

results over earlier ones, as was clumsily done with the three time periods used for the base 

network. 

Unfortunately, both proposals would require significant overhaul and possibly replacement of the 

1431 game training dataset, to add the required statistics and tailor it for an RNN. But if it 

succeeds in increasing the accuracy of the algorithm, it will not be in vain. 

This machine learning technology is not just suited for predicting NFL games, and the code to 

create an algorithm is quite versatile. By switching out the training dataset and performing a few 

optimizations, the algorithm can easily be adapted to predict occurrences such as floods, an 

especially relevant topic in Ellicott City. The town has suffered two “100-year floods” in the past 

3 years, and thus could benefit from an algorithm to predict floods, either through advising 

evacuation, or suggesting fixes for the infrastructure to mitigate flooding. By doing this, machine 

learning could quite literally save lives.  



Bacon 11 
 

Appendix 1 – Works Cited 

“A Machine Learning Analysis Of The NFL: Predicting New Playoff Contenders.” The Harvard 

Sports Analysis Collective, 31 Dec. 2018, harvardsportsanalysis.org/2018/09/a-machine-

learning-analysis-of-the-nfl-predicting-new-playoff-contenders/. 

Blanchard, Ross. “Machine Learning for NFL Game Prediction: 2017 Season 

Retrospective.” Becoming Human: Artificial Intelligence Magazine, Medium, 4 Feb. 

2018, becominghuman.ai/machine-learning-for-nfl-game-prediction-2017-season-

retrospective-cfda3ea66a3d. 

Brid, Rajesh S. “Logistic Regression.” Medium, 17 Oct. 2018, medium.com/greyatom/logistic-

regression-89e496433063. 

Bronshtein, Adi. “A Quick Introduction to K-Nearest Neighbors Algorithm.” Medium, 11 Apr. 

2017, medium.com/@adi.bronshtein/a-quick-introduction-to-k-nearest-neighbors-

algorithm-62214cea29c7. 

“Exploring Naïve Bayes Classifier: Maybe Not so Naïve after All?!” Provalis Research, 11 Aug. 

2017, provalisresearch.com/blog/exploring-naive-bayes-classifier-maybe-not-naive/. 

Patel, Savan. “Chapter 2 : SVM (Support Vector Machine) - Theory.” Medium, 3 May 2017, 

medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-

f0812effc72. 

“Predict NFL Scores.” Kaggle, Kaggle, www.kaggle.com/c/predict-nfl-game-scores-lawfty-

dsco17/data. 

“Pro Football Statistics and History.” Pro-Football-Reference.com, www.pro-football-

reference.com/. 

  



Bacon 12 
 

Appendix 2 – Python Code 

Algorithm class – gathers training data and builds algorithm 

import pandas as pd 

from sklearn.model_selection import cross_val_score 

 

data = pd.read_csv('C:/Users/keert/OneDrive/Documents/intern mentor/hacknight_train.csv') 

data.dropna(inplace=True) 

data.reset_index(drop=True, inplace=True) 

# Replace the columns with the score with winner column 

# 0 for home team winning, 1 for away team winning 

winner = [] 

ties = [] 

for n in range(0, data.shape[0]): 

homescore = data['homescore'][n] 

awayscore = data['awayscore'][n] 

if homescore > awayscore: 

winner.append(0) 

elif homescore < awayscore: 

winner.append(1) 

else: 

ties.append(n) 

data = data.drop(ties) 

data.dropna(inplace=True) 

data.reset_index(drop=True, inplace=True) 

data['winner'] = winner 

feature_names = list(data) 

feature_names.remove('homescore') 

feature_names.remove('awayscore') 

feature_names.remove('winner') 

all_features = data[feature_names].values 



Bacon 13 
 

all_classes = data['winner'].values 

from sklearn import preprocessing 

scaler = preprocessing.StandardScaler() 

all_features_scaled = scaler.fit_transform(all_features) 

import numpy 

from sklearn.model_selection import train_test_split 

# Split data up into training and testing sets 

# 75% is training data, 25% is testing data 

(training_inputs, 

testing_inputs, 

training_classes, 

testing_classes) = train_test_split(all_features_scaled, all_classes, train_size=0.75, 

random_state=1) 

 

from tensorflow.keras.layers import Dense, Dropout 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.models import model_from_json 

# Make a neural network with 361 input neurons, 300 hidden layer neurons, and 1 output 

model = Sequential() 

model.add(Dense(300, input_dim=361, kernel_initializer='normal', activation='relu')) 

model.add(Dropout(0.35)) 

model.add(Dense(1, kernel_initializer='normal', activation='sigmoid')) 

# Compile model 

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

# Fit the model 

model.fit(training_inputs, training_classes, epochs=150, batch_size=10, verbose=0) 

# Evaluate the model 

scores = model.evaluate(testing_inputs, testing_classes, verbose=0) 

print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

 

# Save model to file 



Bacon 14 
 

model_json = model.to_json() 

with open("C:/Users/keert/OneDrive/Documents/intern mentor/model1.json", "w") as json_file: 

json_file.write(model_json) 

# Save neuron connection weights as well 

model.save_weights("C:/Users/keert/OneDrive/Documents/intern mentor/model1.h5") 

print("Saved model to disk") 

Predictor class – loads saved model and input data, and makes a prediction 

from tensorflow.keras.models import model_from_json 

 

import pandas as pd 

 

data = pd.read_csv('C:/Users/keert/OneDrive/Documents/intern mentor/falconsravens.csv') 

data.dropna(inplace=True) 

data.reset_index(drop=True, inplace=True) 

 

# load model from file 

json_file = open('C:/Users/keert/OneDrive/Documents/intern mentor/model.json', 'r') 

loaded_model_json = json_file.read() 

json_file.close() 

loaded_model = model_from_json(loaded_model_json) 

# load weights into model 

loaded_model.load_weights("C:/Users/keert/OneDrive/Documents/intern mentor/model.h5") 

print("Loaded model from disk") 

# evaluate loaded model on test data 

loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) 

prediction = loaded_model.predict_classes(data) 

print(prediction) 

  



Bacon 15 
 

Appendix 3 – Code for Previous Algorithms 

import pandas as pd 

from sklearn.model_selection import cross_val_score 

 

data = pd.read_csv('C:/Users/keert/OneDrive/Documents/intern mentor/hacknight_train.csv') 

data.dropna(inplace=True) 

data.reset_index(drop=True, inplace=True) 

# Replace the columns with the score with winner column 

# 0 for home team winning, 1 for away team winning 

winner = [] 

ties = [] 

for n in range(0, data.shape[0]): 

homescore = data['homescore'][n] 

awayscore = data['awayscore'][n] 

if homescore > awayscore: 

winner.append(0) 

elif homescore < awayscore: 

winner.append(1) 

else: 

ties.append(n) 

data = data.drop(ties) 

data.dropna(inplace=True) 

data.reset_index(drop=True, inplace=True) 

data['winner'] = winner 

feature_names = list(data) 

feature_names.remove('homescore') 

feature_names.remove('awayscore') 

feature_names.remove('winner') 

all_features = data[feature_names].values 

all_classes = data['winner'].values 



Bacon 16 
 

from sklearn import preprocessing 

scaler = preprocessing.StandardScaler() 

all_features_scaled = scaler.fit_transform(all_features) 

import numpy 

from sklearn.model_selection import train_test_split 

# Split data up into training and testing sets 

# 75% is training data, 25% is testing data 

(training_inputs, 

testing_inputs, 

training_classes, 

testing_classes) = train_test_split(all_features_scaled, all_classes, train_size=0.75, 

random_state=1) 

 

# [Code for specific technique goes here] 

 

# Builds algorithm, outputs score 

cv_scores = cross_val_score(clf, all_features_minmax, all_classes, cv=10) 

 

cv_scores.mean() 

 

Decision Tree 

from sklearn.tree import DecisionTreeClassifier 

clf= DecisionTreeClassifier(random_state=1) 

all_features_minmax = all_features_scaled 

 

Random Forest 

from sklearn.ensemble import RandomForestClassifier 

clf = RandomForestClassifier(n_estimators=10, random_state=1) 

all_features_minmax = all_features_scaled 

 

  



Bacon 17 
 

Logistic Regression 

from sklearn.linear_model import LogisticRegression 

clf = LogisticRegression() 

 

SVM 

from sklearn import svm 

clf = svm.SVC(kernel='rbf', C=C) 

all_features_minmax = all_features_scaled 

 

K Nearest Neighbors 

from sklearn import neighbors 

clf = neighbors.KNeighborsClassifier(n_neighbors=17) 

all_features_minmax = all_features_scaled 

 

Naïve Bayes 

from sklearn.naive_bayes import MultinomialNB 

scaler = preprocessing.MinMaxScaler() 

all_features_minmax = scaler.fit_transform(all_features) 

clf = MultinomialNB() 

 

 


